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Abstract

The frequency distribution of the number of interactions per species (i.e., degree distribution) within plant–animal mutualistic

assemblages often decays as a power-law with an exponential truncation. Such a truncation suggests that there are ecological factors

limiting the frequency of supergeneralist species. However, it is not clear whether these patterns can emerge from intrinsic features of the

interacting assemblages, such as differences between plant and animal species richness (richness ratio). Here, we show that high richness

ratios often characterize plant–animal mutualisms. Then, we demonstrate that exponential truncations are expected in bipartite networks

generated by a simple model that incorporates build-up mechanisms that lead to a high richness ratio. Our results provide a simple

interpretation for the truncations commonly observed in the degree distributions of mutualistic networks that complements previous

ones based on biological effects.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The notion of complex networks has recently emerged as
a key concept to understand the interactions among
elements of a system, whether they are physical, chemical,
social, or biological (Strogatz, 2001). In ecology, the
network approach has been applied to investigate the
structure of food webs (Pascual and Dunne, 2006) and of
other interspecific interactions (Guimarães et al., 2006;
Jordano, 1987; Memmott, 1999; Vazquez et al., 2005). In
the network formalism, species are represented by nodes,
and interactions between species are described by links
(reviewed by Pimm, 2002). The network approach is
e front matter r 2007 Elsevier Ltd. All rights reserved.
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helping to describe community-level patterns of interspe-
cific interactions and understanding how interactions
coevolve in species-rich assemblages (Bascompte et al.,
2003, 2006; Guimarães et al., 2006; Jordano et al., 2003;
Lewinsohn et al., 2006; Montoya et al., 2006; Prado and
Lewinsohn, 2004). Our major challenge, however, is to
infer what are the ecological and evolutionary factors that
generate the observed community-level structure of ecolo-
gical networks (Fig. 1A). In this context, community-level
patterns of interactions are likely to uncover the impor-
tance of different ecological factors and coevolutionary
processes (Lewinsohn et al., 2006; Olesen and Jordano,
2002; Thompson, 2005, 2006).
It was recently shown that the frequency distribution of

interactions per species (i.e., degree distribution) within
plant–animal mutualistic assemblages often decays as a
power-law with an exponential truncation (Jordano et al.,
2003; Fig. 1B). Although the degree distribution does not
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Fig. 1. (A) The network describing community-level patterns of interactions among frugivorous birds (black nodes, names indicating some bird taxa) and plants producing fleshy-fruits (white nodes) in

Nava de las Correhuelas, SE Spain (Jordano, unpublished data). This network describes the mutualistic interaction involving seed dispersal services by the animals when consuming the fruits for food.

(B) Log–log plot of the cumulative degree distribution describing the probability of finding a bird species that interacts with at least k plants in the same network.
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describe all aspects of network structure (see Bascompte
et al., 2003), it provides relevant information about the
patterns of specialization within the communities and the
processes that generate the observed distributions (Jordano
et al., 2003). For example, power-law distributions can
arise when recently arrived species are likely to interact
with the most generalist species (Jordano et al., 2003).
In contrast, exponential truncations have been associated
with constraints limiting the existence of species with
many interactions (Amaral et al., 2000; Jordano et al.,
2003; Mossa et al., 2002) or with the random initial
condition at the origin of network (Guimarães et al., 2005).
However, few theoretical studies explore alternative
explanations for exponential truncations that characterize
typical features of plant–animal mutualisms (but see
Vazquez, 2005).

Plant–animal mutualisms are best described as bipartite
networks, in which there are two disjoint sets of species
(animals and plants) and there are no interactions between
species within the same set (Harary, 1969; Jordano et al.,
2003). The bipartite structure per se does not affect the
degree distribution (Ergun, 2002; Liljeros et al., 2001).
However, we note that plant–animal mutualisms show
marked differences in species richness between the animal
and plant sets (high richness ratio, in which the ratio is here
defined as the number of species of the richer set divided by
the number of species of the poorer set; see Table 1). In
fact, Fleming (2005) demonstrated that the species richness
of mutualistic vertebrates (fruiting and nectar-eating bats
and birds) clearly differs from the richness of their food
plants. Along the same lines, Guimarães et al. (2007b) have
shown that the species richness of fish clients is seven-fold
higher than their mutualistic partners, i.e., cleaner fishes
and shrimps. These high richness ratios are not likely to be
generated by sampling bias, because in such cases network
description is based on long-term, detailed field studies that
largely represent enumerations of the actual interactions
occurring in the field (Jordano et al., 2003). Therefore,
these differences in species richness are likely to be a
consequence of ecological processes acting during the
build-up of the network. Thus, the question is whether
processes that generate a high richness ratio also affect the
degree distribution, eventually leading to truncated power-
law distributions.
Table 1

Examples of how widespread are differences in set sizes (SA/SB41) in ecologi

Mutualistic interactions n Median network size Me

Plant–ant 3 26 (10–41) 1.6

Plant–pollinator 40 65 (39–115) 3.0

Plant–frugivore 28 27 (18–58) 1.8

Data analyzed of the main types of mutualisms, including the interactions betw

seed dispersers—data from our dataset (Bascompte et al., 2003) and the Int

defined SA as the larger set and SB as the smaller set. Numbers in parentheses a

SA/SB41 against the binomial distribution.
Here, we introduce build-up mechanisms that lead to
high richness ratios in a simple network model that
generates power-law degree distributions (Barabási and
Albert, 1999). We use analytical predictions, numerical
simulations and analyses of real data to explore the
relationship between exponential truncations and ecologi-
cal processes that lead to a high richness ratio. Our aim is
to contribute to the study of community-level patterns of
interactions in plant–animal mutualisms exploring the
importance of species-level, build-up mechanisms to the
observed network structure.

2. The model

In our model, species are represented by nodes and
interspecific interactions by links. Thus, we present a species-
level model such as those traditionally used in ecological
networks (see Pimm, 2002). Consequently, the model
ignores features such as the number of individuals of each
species that may markedly affect sampling and ecological
patterns and processes (Hubbell, 2001). However, because of
its simplicity, the model allows exploring the effects of
processes that lead to different species richness in mutualistic
networks in the absence of complicating factors. Future
studies should try to link individual and species-level
descriptions of ecological networks. For example, differ-
ences in number interactions among species may be a result
of differences in abundance among species.
In this paper, we incorporate bipartivity and mechan-

isms that lead to high richness ratios into one of the
simplest models generating power-law degree distributions,
the Barabási–Albert (BA) model (Barabási and Albert,
1999). The BA model is a minimal model that recognizes
two aspects of the evolution of complex systems. First,
many complex systems grow in time by adding new
elements. Second, new elements often interact preferen-
tially with the highly connected nodes in the network,
which constitutes the so-called preferential attachment or
‘the rich gets richer’ phenomenon (Barabási and Albert,
1999). The BA model is defined by the following algorithm:
(1) at time t ¼ 0, one creates m0 disconnected nodes (Albert
and Barabási, 2000); (2) at each time step, a new node with
m edges is added to the network and connected to a node
with probability P; (3) the probability P that a new node
cal bipartite networks

dian SA/SB ratio Percentage of networks with significant

deviation of 1:1 ratio

(1.5–2.25) 33.3

(2.1–4.0) 86.0

(1.3–2.9) 46.4

een plants and defensive partners (plant–ant interactions), pollinators and

eraction Web Database (http://www.nceas.ucsb.edu/interactionweb). We

re the first and third quartiles. For each network, we test the significance of

http://www.nceas.ucsb.edu/interactionweb
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will be connected to node i depends on the degree k of that
node, so that

PðkiÞ ¼
ki þ 1P

j

ðkj þ 1Þ
. (1)

Here we propose a model that incorporates the intrinsic
bipartivity of plant–animal mutualisms into the BA model:
(i) at time t ¼ 0, one creates m0 disconnected nodes;
(ii) a proportion of m0 is assigned to the set A, m0A, and the
remaining nodes are assigned to the set B, m0B; (iii) at each
time step and independently of current state, a new node with
m edges is added to the network; (iv) the new node belongs to
set A, with probability (1�p), or to the second set (B) with
probability p; (v) to incorporate preferential attachment, we
assume that the probability that a new node in set B will be
connected to node i in set A follows Eq. (1) with the sum over
j restricted to the set A. Similarly, the probability that a new
node in set A will be connected to node i in set B follows
Eq. (1) with the sum over j restricted to set B.

The above model allows modeling three general mechan-
isms that may account for the high richness ratios in
plant–animal mutualisms here reported, and investigating
their effect on the scale-free behavior of P(k). In the first
mechanism, called ‘‘differential starting size’’, both sets grow
with the same rate, p ¼ 0.5, but the initial core of
disconnected nodes, m0, is not equally divided between both
sets, so that m0A4m0B. Thus, differences of set sizes are
generated at the birth of the network. In the second
mechanism, called ‘‘differential growth rate’’, the two sets
start with the same size, m0A ¼ m0B, but have different
growth rates, that is, p6¼0.5. Consequently, the difference of
set sizes results from the growing dynamics of each set. In
the third mechanism, called ‘‘differential limiting size’’, the
two sets of the network have the same initial core,
m0A ¼ m0B, the same growth rate, p ¼ 0.5, but one of the
sets has a lower size limit, so that SAoSB. In this case, the
difference between set sizes results from differential con-
straints of maximum size of each set. We note that this
differential constraint can be modeled for set A by changing
the value of p to p ¼ 0 after SA has been reached. Therefore,
for simplicity, we may assume that differential limiting size is
a special case of differential growth rate. It is important to
notice that these mechanisms can be implemented by simply
tuning the parameters of the model (m0A, m0B, p, SA, SB)
without directly affecting preferential attachment. Thus, the
proposed mechanisms cannot be interpreted as constraints
acting on preferential attachment. This is an important
difference in relation to previous mechanisms such as
forbidden links or filtering information constraining the
preferential attachment process (Amaral et al., 2000;
Jordano et al., 2003; Mossa et al., 2002).
3. Analytic predictions and numerical results

We explore the differences between analytic predictions
considering unipartite and bipartite networks. A reasonable
analytic prediction for the structure of bipartite networks
may be derived by generalizing previous studies with
unipartite networks. Barabási and Albert (1999) applied
continuum theory to obtain the analytical predictions for
the degree distribution in unipartite BA networks. The BA
model predicts that, for large networks, the degree (k) of a
node i changes with time according to the dynamical
equation:

dki

dt
¼ m

ki

PN�1
j¼1

kj

¼ m
ki

2mt
¼

ki

2t
. (2)

The solution to the above equation is

ki ¼ m
t

ti

� �b

, (3)

in which b ¼ 1/2 and ti is an initial time when i has m

connections, i.e., the time when the node is added to the
network. The degree distribution can be interpreted as the
probability that a randomly chosen node has k links and
the prediction derived from Eq. (3) is

PðkÞ�2m1=bk�ð1=bþ1Þ. (4)

Data from real, plant–animal networks usually show
power-laws with exponential truncations (Jordano et al.,
2003). Additionally, numerical simulations suggest that
finite-size fluctuations lead to truncations in unipartite
networks and animal aggregation models (Guimarães
et al., 2005; Keitt and Stanley, 1998). However, no previous
study investigates if build-up mechanisms may also
generate truncated power-laws. We introduce an additional
analytic approach to explore the conditions that lead to
exponential truncation. The introduced approach demon-
strates that truncated power-laws observed in plant–animal
mutualisms are expected if high richness ratio is occurring
due to build-up mechanisms.
In the original BA model, each event leads to an increase

in the network size and in the number of connections. In
the bipartite model considered here, we have two different
set sizes. Without loss of generality, we focus our analytical
results in set A. By step (v) of our model, the number of
connections of a node in set A can increase only at time
events in which a new node enters in set B. Also, according
to step (iv), a new node will be randomly assigned to either
set A or B. Therefore, the growth rate of the number of
connections of a node i in set A is proportional to m, to the
probability p that nodes are assigned to B, and to the
number of connections of node i relative to the total
number of connections in set A (preferential attachment):

dki

dt
¼ pm

kiP
j2A

kj

¼
pki

t
. (5)

Integrating we obtain

kiðtÞ ¼ m
t

ti

� �p

, (6)
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where ti is the time where node i is inserted into set A. If p is
not too close to 1, such that (1�p)t4m0A, then the number
of nodes added to set A in the growth process is much
larger than the number of nodes in the initial set m0A and
we may assume that, typically, the node i is an added node.
In this case, neglecting the initial set, we may proceed as in
Barabási and Albert (1999) to write

probðkiokÞ ¼ prob ti4t
m

k

� �1=p
� �

¼ 1�
m

k

� �1=p

, (7)

where we have assumed that the probability density of
nodes entering in set A is uniform. The cumulative
probability is, therefore,

PðkiXkÞ ¼
m

k

� �1=p

. (8)

This is a power-law distribution which drops fast for
small p.

If, on the other hand, p is close to 1, so that
(1�p)tom0A, most of the nodes in set A are nodes of the
initial set, for which ti ¼ 1. In this case ki(t) ¼ mt/m0A and
the number of connections of all nodes grows uniformly on
the average. In this situation, preferential attachment does
not lead to the high heterogeneity in the number of
connections observed for unipartite networks. In fact,
because the degree of all nodes in A grows uniformly in
time, the attachment of nodes added to B to the nodes of A

is essentially a random process, leading to an exponential
distribution instead of a power-law. Therefore, the
combined action of slow growth of the set and preferential
attachment, lead to an exponential distribution in the
number of connections of these nodes, with average
degree equal to mt/m0A. Writing this distribution as
f(k) ¼ C exp(�gk) and imposing

R1
0 f ðkÞdk ¼ 1 andR1

0 kf ðkÞdk ¼ mt=m0A, we find 1/C ¼ g ¼ m0A/mt. The
cumulative distribution in this case is a pure exponential

PðkiXkÞ ¼

Z 1
k

f ðk0Þdk0 ¼ exp �
m0A

mt

� �
k

h i
. (9)

We use numerical simulations to investigate if the above
analytic approach reproduces the behavior of degree
distributions for small networks. Except when explicitly
stated, the simulations are performed using m0A ¼ m0B

¼ 10, p ¼ 0.5, and m ¼ 3. The simulations end when one
of the set sizes reaches Si ¼ 5.0� 102. We plot P(k) for
both sets separately, P(kA) and P(kB), and both distribu-
tions are plotted as cumulative distributions (Jordano
et al., 2003). Cumulative distributions are often used
to improve the characterization of degree distributions
(Strogatz, 2001).

In the simulation of ‘‘differential starting size’’, we vary
the initial core of set A, m0A, keeping the initial core of set
B as m0B ¼ 10. In Fig. 2, we illustrate degree distributions
of set A for different m0A. All degree distributions follow
power-laws, although the slopes of the degree distribution
are affected by the increase of m0A. Therefore, we conclude
that ‘‘differential start size’’ does not affect qualitatively
the functional form of P(k) predicted by the BA model
even in small networks.
To test the effect of ‘‘differential growth rate’’ on P(k),

we vary p, the probability of a new node being assigned to
set B, maintaining the initial size of the sets equal. We use
m0A ¼ m0B ¼ 50 nodes in all simulations, because
m0A ¼ m0B ¼ 10 does not allow an accurate determination
of P(kA) for p ¼ 1. The results of the simulations
demonstrate that p markedly affects the functional form
of P(kA). First, the slope of degree distribution decays with
p, as expected from the analytical prediction (Fig. 3A).
Second, as predicted from the analytical analysis, the
power-law behavior of P(kA) is preserved for p closer to 0
(pp0.5), that is, when the size of set A increases faster or at
the same rate than set B (Fig. 3A). However, if p is closer to
1 (p40.5), that is, the set A increases slower than set B,
exponential deviations appear for larger k, generating a
P(kA) that decays as a power-law with an exponential
truncation (Fig. 3A). For the limiting case in which p ¼ 1,
there is no evidence of power-law behavior at all, and P(kA)
follows a slow-decaying exponential function P(k)�e�kg,
with the slope following the analytical prediction (m0A/mt)
(Fig. 3A). Therefore, in bipartite networks in which pE1,
preferential attachment generates slow-decaying exponen-
tial curves and not power-law degree distribution, as
usually expected (Barabási and Albert, 1999). Exponential
distributions of P(k) are generally associated to networks
in which nodes are connected with a constant probability, a
rule called random attachment (Albert and Barabási,
2002). However, it is noteworthy that the exponential
distribution generated by p ¼ 1 decays slower than the
distribution predicted by random attachment (Fig. 3B).
In the last simulation, aiming to test the effect of

‘‘differential limiting size’’ on P(k), we vary the final size of



ARTICLE IN PRESS

0.001

0.01

0.1

1
1 10 100

degree (k)

P
(k

) p = 1

p = 0.8

p = 0.5p = 0.1

0.01

0.1

1
1 10 100

degree (k)

P
(k

)

Fig. 3. Effects of the rate of increase of a set size (number of nodes), p, on its cumulative degree distribution P(k). (A) Log–log plot of the cumulative P(k)
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set A, SA, keeping the final size of set B, SB, constant
(SB ¼ 1.0� 103). In this simulation, the sets A and B have
different size limits. If we let the simulation stop when one
of the sets reaches the previously established limiting size,
we preserve the scale-free behavior for both P(kA) and
P(kB) (Fig. 4). However, if SA5SB and the simulation
stops only when both sets reach the previously established
limiting size we find that P(kA) behaves as a slow-decaying
exponential function (Fig. 4). This numerical result
supports the notion that differential limiting size can be
modeled as a special case of differential growth rate. In
contrast, P(kB) is characterized by an overrepresentation of
nodes with the minimum of connections, m, but preserves
the power-law behavior for k4m (Fig. 4). As the difference
between SA and SB decreases, both degree distributions
converge to power-laws (Fig. 4).

4. Analyses of real plant–animal networks

We also explore if the differences observed in the degree
distributions of plants and animals in real pollination and
seed dispersal networks (Jordano et al., 2003) are in
agreement with the predictions of ‘‘differential growth
rate’’ and ‘‘differential limiting size’’. The use of real
networks to investigate the validity of the above mechan-
isms is difficult for at least three reasons. First, the
available networks are static descriptions of these mutua-
listic interactions and there are no available data on how
network structure changes in time. Second, we have no
information about the initial conditions of these networks,
and a recent theoretical study suggests that this initial
condition may markedly affect the degree distribution of
small networks (Guimarães et al., 2005). Finally, sampling
effort may vary among networks and this may affect the
described patterns of interactions (see Olesen and Jordano,
2002). We circumvent these problems by testing for simple,
general patterns of relationships expected among degree
distributions of different sets if ‘‘differential growth rate’’
or ‘‘differential limiting size’’ are operating.
The degree distribution can be described by two metrics,

/kS and kx, in which /kS is the average degree and kx is
the cut-off value, that is, the k-value beyond which the
degree distribution departs from a power-law (Jordano et
al., 2003; Guimarães et al., 2005). We used the standar-
dized cut-off value, kx//kS, to track changes in the degree
distribution from power-law distributions (large kx//kS)
to fast-decaying distributions (small kx//kS) (Fig. 5A).
The cut-off value, kx, was recorded from the literature
(N ¼ 41 networks; Jordano et al., 2003) and /kS was
estimated for each set separately.
If ‘‘differential growth rate’’ or ‘‘differential limiting

size’’ are operating we should expect that smaller sets
usually show smaller values of kx//kS. In fact, in 73.2% of
the mutualistic networks, the smaller set shows smaller
values of kx//kS (p ¼ 0.002, binomial test). Additionally,
we should expect the differences between the ratio kx//kS
of both sets will increase with the difference between the
richness of two sets. Again the prediction is supported: the
differences between the values of kx//kS of both sets
increase with the differences in species richness, although
with a lot of variation (see Fig. 5B).

5. Implications for plant–animal networks

Ecological networks, as some large, sparse food webs
(Dunne et al., 2002; Memmott et al., 2000), show power-
law degree distributions. Preferential attachment may
explain power-laws, although different mechanisms may
lead to this pattern in complex networks (Albert and
Barabási, 2002). Preferential attachment may explain
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power-laws, although different mechanisms may lead to
this pattern in complex networks (Albert and Barabási,
2002). The exponential truncation observed in some degree
distributions is usually interpreted as evidence of con-
straints limiting preferential attachment. Constraints such
as filtering information acting on Internet evolution
(Mossa et al., 2002), aging operating on movie-actor
networks (Amaral et al., 2000), and costs of adding edges
influencing the network of world airports have been
proposed to explain exponential truncation of power-laws
in non-biological systems (Amaral et al., 2000). In ecology,
the truncation of power-laws was observed in many
coevolutionary bipartite networks of plant–animal mutu-
alisms. Jordano et al. (2003) proposed that in such systems
truncation emerges as a consequence of ‘‘forbidden links’’,
which are interactions that a priori cannot occur due to
biological constraints, i.e., structural zeroes in the interac-
tion matrix.
Forbidden links do occur in natural communities and
limit the number of interactions in biological systems
(Bascompte and Jordano, 2006) as for example, when a
given bird species is unable to interact with a fraction of
plant species simply because they are not able to eat large
fruits, or when a pollinator and a flowering plant species
occur at different times of the year (with different
phenologies). However, here we clearly demonstrate that
exponential truncations can also emerge from processes
associated with differences in species richness between
plants and animals. We show that high richness ratios
associated with ‘‘differential growth rate’’ and ‘‘differential
limiting size’’ promote deviations of the power-law
distribution predicted by a minimal model that generates
power-laws through preferential attachment. Therefore,
along with random initial conditions (Guimarães et al.,
2005) and constraints to preferential attachment (Jordano
et al., 2003), processes affecting species richness are
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alternative factors contributing to the existence of expo-
nential truncations in ecological bipartite networks.

Our results point to the importance of exploring finite-
size fluctuations for the characterization of small networks
(Amaral et al., 2004; Guimarães et al., 2005, 2007a).
Additionally, our results suggest that long-term processes
of community assembly determining the differences of
species richness between plants and animals may affect
the organization of ecological bipartite networks. We
should expect that other network measurements may be
affected by high richness ratios. For example, richness
ratio may affect asymmetry in the mutual specialization
between species (Vázquez and Aizen, 2004): if there
is a high richness ratio and interactions are randomly
distributed, the species that form the smaller set will
have many interactions (‘‘generalists’’). In contrast,
species from the larger set will have a lower number of
interactions and would be called ‘‘specialists’’. Similar
effects are expected in quantitative measurements of the
extent of mutual dependence or interaction strength, which
generate dependence asymmetries (Bascompte et al., 2006).
Future studies should quantify the importance of richness
ratio in the patterns recorded for these measurements
(Bascompte et al., 2006; Vázquez and Aizen, 2004).
However, asymmetry, dependence and other network
metrics such as nestedness are often analyzed using a
null model approach (Bascompte et al., 2003; Vázquez
and Ainzen, 2003), which controls for the effects of
high richness ratio. In contrast, the description of
degree distribution does not take into account high
richness ratio.

Our analytical and numerical results suggest that the
association between preferential attachment and power-law
distributions, widely reported for unipartite networks
(Albert and Barabási, 2002), is expected for finite bipartite
networks only when two conditions are satisfied: the set of
interest grows at the same rate or faster than the other set
(pp0.5) and has a similar or higher limiting size (SAXSB).
Examples of differential growth rate and differential
limiting sizes are widespread in nature. Differential growth
rate occurs over evolutionary time, for instance, because
the diversity of insect herbivores and host plants in
interacting plant–herbivore assemblages seldom increase
at similar rates (Thompson, 1994). In ecological time,
differential growth rate occurs when the dispersal rates of
plants and animals (e.g., pollinators or seed dispersers) to
recently created habitats differ (e.g., Shanahan et al., 2001).
On the contrary, ‘‘differential limiting sizes’’ may occur, for
example, when the number of species of a given set is
limited by metabolic-related processes, or when the species
entering the network originate from a depauperate
biogeographic pool. As a consequence of these processes,
we will not expect to find power-law behavior for the P(k)
of the set that increases at a slower rate in the above-
mentioned plant–animal networks, even if preferential
attachment is occurring without forbidden links. The more
marked truncation of P(k) in the smaller sets and the
positive association between differences in cut-off values
and richness ratio in real mutualistic networks corrobo-
rates these ideas.
The structure of ecological networks may also have

consequences for the robustness of interspecific interac-
tions to local extinctions (Fortuna and Bascompte, 2006;
Memmott et al., 2004). Networks characterized by
truncated power-laws are more robust to the extinction
of keystone, highly connected species than scale-free
networks (Jordano et al., 2003). Therefore, we hypothesize
those ecological processes that affect species richness may
also increase the robustness of interaction networks by
generating truncated degree distributions through high
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richness ratios. Future theoretical studies should investi-
gate this hypothesis.
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Guimarães, P.R., Rico-Gray, V., dos Reis, S.F., Thompson, J.N., 2006.

Asymmetries in specialization in ant-plant mutualistic networks. Proc.

R. Soc. London B 273, 2041–2047.
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